Numerals are doubly bounded: evidence from exclusives and polarity
Lucas Fagen (The University of Chicago)

What is the status of this inference?

(1) Three cats won awards.
\rightarrow No more than three cats won awards.

Scalar implicature?

(2)
a. $\exists x[\operatorname{cats}(x) \wedge$ won $($ awards $)(x) \wedge \#(x)=3]$
b. $\neg \exists y[\operatorname{cats}(y) \wedge$ won $($ awards $)(y) \wedge \#(y)>3]$
(Horn 1972, Spector 2013, Bylinina \& Nouwen 2018)

Maximization over degrees?

(3) $\max [n \mid \exists x[\operatorname{cats}(x) \wedge \operatorname{won}(a w a r d s)(x) \wedge \#(x)=n]]=3$
(Kennedy 2015, Buccola \& Spector 2016)

This talk

- English exclusives just, merely, and mere can license negative polarity items, but only when they compose with degree terms.
- To account for this data, we need a degree-maximizing theory of numerals that computes upper bounds in the semantics.

Data

(4)
a. Just six American skiers have ever won two medals in a single Olympics.
b. Just two were ever made.
c. The Librarian was one of just three Lifeworkers ever honored with that rank.
d. From Friday to Wednesday, over the course of twelve screenings, merely 95 seats ever sat empty.
e. A mere 750 were ever subsequently convicted of any offense.

Data

- Coppock \& Beaver (2013) analyze a mere n as a generalized quantifier whose at-issue component is downward entailing.
- However, not just any quantifier will do: it has to be a degree term.

Data

a. Just three of my cats have ever won any awards.
b. Just a few of my cats have ever won any awards.
c. Just a minority of my cats have ever won any awards.
d. Just a fraction of my cats have ever won any awards.
e. \#Just some of my cats have ever won any awards.
f. \#Just a cat won any awards.
g. \#Just Russian blues won any awards.

Data

Just and merely don't license NPIs as VP-modifiers either (unlike only).
(6)
a. My cat Gertrude only ever eats caviar.
b. \#My cat Gertrude just ever eats caviar.
c. \#My cat Gertrude merely ever eats caviar.

Data

A final puzzle: numerals need to be focused, and they need to compose directly.
(7)
a. I brought just [three] $]_{F}$ pencils to any of the exams.
b. \#l brought just three [pencils] ${ }_{F}$ to any of the exams.
c. \#l just brought three pencils to any of the exams.

Roadmap

This data provides evidence for two theoretically significant conclusions: one about how exclusives vary, and one about how numeral upper bounds are derived.

- Just, merely, and mere do not order alternatives by entailment (unlike only).
- Numerals impose their own upper bounds over degrees.
- The lower bounds presupposed by exclusives and the upper bounds asserted by numerals conspire to create an NPI environment.

Exclusives

(8) Lexical entry schema for exclusives (Coppock \& Beaver 2014)
a. $\quad \operatorname{miN}(p)=\lambda w . \exists q \in \circ[q(w) \wedge q \geq p]$
b. $\operatorname{MAX}(p)=\lambda w . \forall q \in c o[q(w) \rightarrow p \geq q]$
c. $\llbracket o n l y \rrbracket=\lambda p \lambda w: \min (p)(w) \cdot \operatorname{mAx}(p)(w)$

Intended to unify complement exclusion and scalar readings.

Exclusives

Variation in the \geq relation results in different readings.
(9) Gertrude only eats caviar.
\rightarrow Gertrude eats nothing other than caviar. // entailment(\geq)
(10) Frederick is just a kitten.
\rightarrow Frederick is nothing higher than a kitten. // rank((\geq)

How absolute are scalar restrictions?

- Horn (2000): only orders alternatives by entailment, just by rank.
- Coppock \& Beaver (2014): exclusives have "soft preferences" for different scales.

Fagen (2022): by restricting just/merely to rank-order scales, we can derive the NPI pattern.

NPIs

Chierchia (2013): NPIs are existential quantifiers associated with maximally wide domains, that trigger exhaustification over domain alternatives.
(11) $\left[[\right.$ ever] $]=\lambda e . \exists i C_{\text {ever }}[T(e)=i]$
(12)
a. exh[Gertrude doesn't ever eat kibble.]
b. \# exh[Gertrude ever eats kibble.]

NPIs

(11) $[[e x h]]=\lambda p \lambda w \cdot p(w) \wedge \forall q \in \operatorname{ALT}(p)\left[{ }^{a} q(w) \rightarrow{ }^{a} p \geq{ }^{a} q\right]$

- Exhaustification is scalar: sensitive to the same orderings exclusives are.
- This allows a straightforward treatment of rank-order scales.

What are the alternatives?

- Exclusive's focus alternatives (F-ALT)
- NPI's domain alternatives (D-ALT)
- The propositional F-ALTs will also include NPIs, so we need to include the D-ALTs for each F-ALT too.

$$
\operatorname{ALT}(p)=\operatorname{F-ALT}(p) \cup D-\operatorname{ALT}(p) \cup\{\operatorname{D-ALT}(q) \mid q \in \operatorname{F-ALT}(p)\}
$$

\#just ever

MAX does not reverse strength: if $q \geq p$, then $\operatorname{MAX}(q) \geq \operatorname{MAX}(p)$. This means the narrower D-ALTs are still ranked higher than the prejacent.
(13) \#[[exh(Gertrude just ever eats caviar)]]

$$
\begin{gathered}
=\left(\exists i \subset_{\text {ever }}[T(\operatorname{eat}(\mathbf{k})(\mathbf{g}))=i]\right)(\lambda p \lambda w: \operatorname{MIN}(p)(w) . \operatorname{MAX}(p)(w) \wedge \\
\quad \forall q \in_{\operatorname{ALT}(\operatorname{MAX}(p))[q(w) \rightarrow \operatorname{MAX}(p) \geq q])} .
\end{gathered}
$$

\#just ever

(14)
a. $\operatorname{ALT}(p)=\{<$ caviar, ever>, <kibble, ever>, <chocolate, ever>, <caviar, sometimes>, <kibble, sometimes>, <chocolate, sometimes>, <caviar, often>, <kibble, often>, <chocolate, often>...\}
b. $\operatorname{ALT}(\operatorname{MAX}(p))=\{\operatorname{MAX}(<$ caviar, ever>), $\operatorname{MAX}($ <caviar, sometimes>), MAX(<caviar, effent)...\}
x contradiction!

Proposal

- Without an independent NPI trigger, NPIs cannot appear in the scope of rank-order MIN/MAX.
- Contra Coppock \& Beaver, then, NPIs with just n must be outside the MIN/MAX environment.
- Scope of just is confined to the numeral, but NPIs are still in the scope of the degree-maximizing function.
(15)
a. Just three cats won any awards.
b. \#Just some cats won any awards.

Proposal

Numerals as existential quantifiers:
(15) $\operatorname{ONLY}(\exists x[\operatorname{cats}(x) \wedge$ won $(a w a r d s)(x) \wedge \#(x)=3])$
x still in the MIN/MAX environment.

Proposal

Numerals as degree quantifiers (Kennedy 2015):
(16)
a. $\quad[$ three $]]=\lambda D_{\langle d, p)} \cdot \max [n \mid D(n)]=3$
b. $\operatorname{ONLY}(\max [n \mid \exists x[\operatorname{cats}(x) \wedge$ won $(\operatorname{awards})(x) \wedge \#(x)=n]]=3)$
x still in the MIN/MAX environment.

Proposal

To get the right LF, we need to decompose numerals and maximality.
Buccola \& Spector (2016):
(17)
a. $[[$ three $]]=3$
b. $[[$ many $]]=\lambda d_{d} \lambda x_{e} . \#(x)=d$
c. $[[i s M a x]]=\lambda d_{d} \lambda D_{\langle d, p\rangle} \cdot \max [n \mid D(n)]=d$
d. $\quad \max \left(D_{\langle d, p\rangle}\right)=$ if $\exists n[D(n)]: \quad$ in. $D(n) \wedge \forall m[D(m) \rightarrow m \leq n]$ else 0
$\max [n \mid \exists x[\operatorname{cats}(x) \wedge \boldsymbol{\operatorname { w o n }}($ award $s)(x) \wedge \#(x)=n]]=3$
Three cats won awards

Proposal

(18)
a. $\quad\left[\left[j u \mathrm{Ji}_{\mathrm{D}-\mathrm{ONLY}}\right]\right]=\lambda D_{\langle d, p\rangle} \lambda n_{\mathrm{d}} \cdot \operatorname{ONLY}(D(n))$
b. $\operatorname{LIFT}(3)=\lambda D \cdot D(3)$
c. $\mathrm{BE}(\mathrm{LIFT}(3)=\lambda n . n=3$
d. $\quad[[j u s t]]((\operatorname{BE}(\operatorname{LIFT}(3)))=\lambda n \cdot \operatorname{ONLY}(n=3)$
e. $\mathrm{A}(\lambda n \cdot \operatorname{ONLY}(n=3))=\lambda D . \exists d[\operatorname{ONLY}(d=3) \wedge D(d)]$
$\exists d\left[\operatorname{ONLY}_{s}(d=3) \wedge \max [n \mid \exists x[\operatorname{cats}(x) \wedge \operatorname{won}(\operatorname{awards})(x) \wedge \#(x)=n]]=d\right]$ Just three cats won any awards
$\lambda D . \exists d\left[\operatorname{ONLY}_{s}(d=3) \wedge D(d)\right] \quad \lambda d . \max [n \mid \exists x[\operatorname{cats}(x) \wedge \mathbf{w o n}(\operatorname{awards})(x) \wedge \#(x)=n]]=d$
[Just three] ${ }_{2}$

Proposal

- Same truth-conditions as before, but the NPI has been rescued from the MIN/MAX environment.
- Ordering on the D-ALTs can default to entailment now, as desired.
(19) $\operatorname{exh}[\exists d[\operatorname{MAX}(d=3) \wedge \max [n \mid \exists x[\operatorname{cats}(x) \wedge \operatorname{won}(\operatorname{awards})(x) \wedge \#(x)=n]]=d]]=p \wedge$ $\forall q \in \operatorname{D-ALT}(p)[(p \rightarrow q) \rightarrow \neg q]$
\checkmark NPIs ok!

Proposal

- Exclusives are necessary to render the at-issue component downward entailing, rather than non-monotonic.
- Numeral maximality is necessary to bound NPIs outside the MIN/MAX environment.
(20) $\exists d[\operatorname{ONLY}(d=3) \wedge \exists x[\operatorname{cats}(x) \wedge$ won(awards) $(x) \wedge \#(x)=d]]$
x Without maximality, at-issue component of (20) is trivial.

Proposal

(21)
a. I brought just $[\text { three }]_{F}$ pencils to any of the exams.
b. \#l brought just three [pencils] ${ }_{F}$ to any of the exams.
c. \#l just brought three pencils to any of the exams.

- Exclusives and numerals need to compose directly so they can scope together.
- Focus must be on the numeral because it's the only expression in the MIN/MAX environment.

Conclusions

- English exclusives just, merely, and mere can license negative polarity items, but only when they compose with degree terms.
- To explain this data in a framework that predicts polarity contrasts between exclusives more generally, we need a numeral semantics that maximizes over degrees, without which the unusual NPI-licensing properties of these exclusives would go unexplained.

Conclusions

- We need stricter restrictions on how exclusives order alternatives: just, merely, and mere are restricted to rank-order scales.
- Numerals denote singular degree terms, but can be shifted to upper-bounding degree quantifiers.

Thanks!

Buccola, Brian, and Benjamin Spector. 2016. Modified numerals and maximality. Linguistics and Philosophy 39:151-199.
Bylinina, Lisa, and Rick Nouwen. 2018. On "zero" and semantic plurality. Glossa 3:1-23.
Chierchia, Gennaro. 2013. Logic in grammar: polarity, free choice, and intervention. Oxford: Oxford University Press
Coppock, Elizabeth, and David Beaver. 2013. Mere-ology: toward a unified analysis of mere and other exclusives. In Alternatives in semantics.

Fagen, Lucas. 2022. A scalar analysis of polarity contrasts between exclusive modifiers. Proceedings of the 23rd Amsterdam Colloquium.

Horn, Laurence. 2000. Pick a theory (not just any theory). In Negation and polarity: syntactic and semantic perspectives.
Kennedy, Christopher. 2015. A "de-Fregean" semantics (and neo-Gricean pragmatics) for modified and unmodified numerals. Semantics and Pragmatics 8:1-44.

Spector, Benjamin. 2013. Bare numerals and scalar implicatures. Language and Linguistics Compass 7:273-294.

Bonus: Bylinina \& Nouwen (2018)

Why doesn't zero license NPIs?
(22)
a. No cats won any awards.
b. \#Zero cats won any awards.

Bonus: Bylinina \& Nouwen (2018)

(23) $\exists x[\operatorname{cats}(x) \wedge$ won $($ awards $)(x) \wedge \#(x)=0]$

- This is a contradiction given traditional semantics of plural count nouns as a join semi-lattice.
- BN propose to augment plural noun denotations with a bottom element \perp.

Bonus: Bylinina \& Nouwen (2018)

- With \perp, zero sentences are tautologies, but become contingent via exhaustification.
- NPIs are bad: (24) is not downward entailing prior to application of exh.
(24) [[exh[Zero cats won awards]]]

$$
\begin{aligned}
& =\exists x[\operatorname{cats}(x) \wedge \text { won }(\text { awards })(x) \wedge \#(x)=0] \wedge \neg \exists y[\operatorname{cats}(y) \wedge \\
& \quad \text { won }(a w a r d s)(y) \wedge \#(y)>0]
\end{aligned}
$$

Bonus: Bylinina \& Nouwen (2018)

(25) $\max [n \mid \exists x[\operatorname{cats}(x) \wedge \operatorname{won}(a w a r d s)(x) \wedge \#(x)=n]]=0$

- The doubly bounded (25) derives the right truth-conditions, but wrongly predicts zero to license NPIs.
- BN argue that zero's polarity profile is evidence for a lower-bounded existential numeral semantics that does not maximize over degrees.

Bonus: Bylinina \& Nouwen (2018)

- Given upper-bounded numeral semantics, we expect zero to license NPIs because it's the lowest value in the domain.
- But as the data l've considered in this paper shows, positive numerals do license NPIs when it's presupposed that they denote the lowest value in the domain.
- Data with zero and positive numerals points in different directions!

