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What is the status of this inference?

(1) Three cats won awards. 

→ No more than three cats won awards. 



Scalar implicature?

(2) 

a. ∃x[cats(x) ∧ won(awards)(x) ∧ #(x) = 3] 
b. ¬∃y[cats(y) ∧ won(awards)(y) ∧ #(y) > 3]

(Horn 1972, Spector 2013, Bylinina & Nouwen 2018)



Maximization over degrees?

(3) max[n|∃x[cats(x) ∧ won(awards)(x) ∧ #(x) = n]] = 3

(Kennedy 2015, Buccola & Spector 2016)



This talk

● English exclusives just, merely, and mere can license negative polarity items, 
but only when they compose with degree terms. 

● To account for this data, we need a degree-maximizing theory of numerals 
that computes upper bounds in the semantics. 



Data

(4)

a. Just six American skiers have ever won two medals in a single Olympics.
b. Just two were ever made.
c. The Librarian was one of just three Lifeworkers ever honored with that rank.
d. From Friday to Wednesday, over the course of twelve screenings, merely 95 

seats ever sat empty.
e. A mere 750 were ever subsequently convicted of any offense. 



Data

● Coppock & Beaver (2013) analyze a mere n as a generalized quantifier 
whose at-issue component is downward entailing. 

● However, not just any quantifier will do: it has to be a degree term.



Data

(5)

a. Just three of my cats have ever won any awards.
b. Just a few of my cats have ever won any awards.
c. Just a minority of my cats have ever won any awards.
d. Just a fraction of my cats have ever won any awards.
e. #Just some of my cats have ever won any awards.
f. #Just a cat won any awards.

g. #Just Russian blues won any awards.



Data

Just and merely don’t license NPIs as VP-modifiers either (unlike only).

(6)

a. My cat Gertrude only ever eats caviar.
b. #My cat Gertrude just ever eats caviar.
c. #My cat Gertrude merely ever eats caviar.



Data

A final puzzle: numerals need to be focused, and they need to compose directly.

(7)

a. I brought just [three]F pencils to any of the exams. 
b. #I brought just three [pencils]F to any of the exams. 
c. #I just brought three pencils to any of the exams.



Roadmap

This data provides evidence for two theoretically significant conclusions: one 
about how exclusives vary, and one about how numeral upper bounds are derived.

● Just, merely, and mere do not order alternatives by entailment (unlike only).
● Numerals impose their own upper bounds over degrees.
● The lower bounds presupposed by exclusives and the upper bounds asserted 

by numerals conspire to create an NPI environment. 



Exclusives

(8) Lexical entry schema for exclusives (Coppock & Beaver 2014)

a. MIN(p) = λw.∃q∈CQ[q(w)∧q≥p]
b. MAX(p) = λw.∀q∈CQ[q(w)→p≥q]
c. ⟦only⟧ = λpλw: MIN(p)(w).MAX(p)(w)

Intended to unify complement exclusion and scalar readings.



Exclusives

Variation in the ≥ relation results in different readings.

(9) Gertrude only eats caviar. 

→ Gertrude eats nothing other than caviar. // entailment(≥)

(10) Frederick is just a kitten.

→ Frederick is nothing higher than a kitten. // rank(≥)



How absolute are scalar restrictions?

● Horn (2000): only orders alternatives by entailment, just by rank.
● Coppock & Beaver (2014): exclusives have “soft preferences” for different 

scales.

Fagen (2022): by restricting just/merely to rank-order scales, we can derive the 
NPI pattern. 



NPIs

Chierchia (2013): NPIs are existential quantifiers associated with maximally wide 
domains, that trigger exhaustification over domain alternatives.

(11) [[ever]] = λe.∃i⊂ever′ [τ(e) = i]

(12)

a. exh[Gertrude doesn’t ever eat kibble.]
b. # exh[Gertrude ever eats kibble.]



NPIs

(11) [[exh]] = λpλw.p(w) ∧ ∀q∈ALT(p)[aq(w) → ap ≥ aq]

● Exhaustification is scalar: sensitive to the same orderings exclusives are.
● This allows a straightforward treatment of rank-order scales.



What are the alternatives?

● Exclusive’s focus alternatives (F-ALT)
● NPI’s domain alternatives (D-ALT)
● The propositional F-ALTs will also include NPIs, so we need to include the 

D-ALTs for each F-ALT too. 

ALT(p) = F-ALT(p) ∪ D-ALT(p) ∪ {D-ALT(q) | q ∈ F-ALT(p)}



#just ever

MAX does not reverse strength: if q ≥ p, then MAX(q) ≥ MAX(p). This means the 
narrower D-ALTs are still ranked higher than the prejacent. 

(13) #[[exh(Gertrude just ever eats caviar)]] 

= (∃i⊂ever [τ(eat(k)(g)) = i])(λpλw : MIN(p)(w). MAX(p)(w) ∧ 

∀q∈ALT(MAX(p))[q(w) → MAX(p) ≥ q])



#just ever

(14)

a. ALT(p) = {<caviar, ever>, <kibble, ever>, <chocolate, ever>, <caviar, 
sometimes>, <kibble, sometimes>, <chocolate, sometimes>, <caviar, often>, 
<kibble, often>, <chocolate, often>...}

b. ALT(MAX(p)) = {MAX(<caviar, ever>), MAX(<caviar, sometimes>), MAX(<caviar, 
often>)...}

✗ contradiction!



Proposal

● Without an independent NPI trigger, NPIs cannot appear in the scope of 
rank-order MIN/MAX.

● Contra Coppock & Beaver, then, NPIs with just n must be outside the 
MIN/MAX environment.

● Scope of just is confined to the numeral, but NPIs are still in the scope of the 
degree-maximizing function.

(15)

a. Just three cats won any awards.
b. #Just some cats won any awards. 



Proposal

Numerals as existential quantifiers:

(15) ONLY(∃x[cats(x) ∧ won(awards)(x) ∧ #(x) = 3])

✗ still in the MIN/MAX environment.



Proposal

Numerals as degree quantifiers (Kennedy 2015):

(16) 

a. [[three]] = λD⟨d,p⟩.max[n|D(n)] = 3
b. ONLY(max[n|∃x[cats(x) ∧ won(awards)(x) ∧ #(x) = n]] = 3)

✗ still in the MIN/MAX environment.



Proposal

To get the right LF, we need to decompose numerals and maximality.

Buccola & Spector (2016):

(17)

a. [[three]] = 3
b. [[many]] = λddλxe.#(x) = d
c. [[isMax]] = λddλD⟨d,p⟩.max[n|D(n)] = d
d. max(D⟨d,p⟩) = if ∃n[D(n)]: ιn.D(n)∧∀m[D(m)→ m ≤ n]

else 0





Proposal

(18)

a. [[justD-ONLY]] = λD⟨d,p⟩λnd.ONLY(D(n))
b. LIFT(3) = λD.D(3)
c. BE(LIFT(3) = λn.n = 3
d. [[just]]((BE(LIFT(3))) = λn.ONLY(n = 3)
e. A(λn.ONLY(n = 3)) = λD.∃d[ONLY(d = 3) ∧ D(d)]





Proposal

● Same truth-conditions as before, but the NPI has been rescued from the 
MIN/MAX environment.

● Ordering on the D-ALTs can default to entailment now, as desired.  

(19) exh[∃d[MAX(d = 3) ∧ max[n|∃x[cats(x) ∧ won(awards)(x) ∧ #(x) = n]] = d]] = p ∧ 
∀q∈D-ALT(p)[(p ↛ q) → ¬q]

✓ NPIs ok!



Proposal

● Exclusives are necessary to render the at-issue component downward 
entailing, rather than non-monotonic.

● Numeral maximality is necessary to bound NPIs outside the MIN/MAX 
environment.

(20) ∃d[ONLY(d = 3) ∧ ∃x[cats(x) ∧ won(awards)(x) ∧ #(x) = d]]

✗ Without maximality, at-issue component of (20) is trivial. 



Proposal

(21)

a. I brought just [three]F pencils to any of the exams. 
b. #I brought just three [pencils]F to any of the exams. 
c. #I just brought three pencils to any of the exams.

● Exclusives and numerals need to compose directly so they can scope 
together. 

● Focus must be on the numeral because it’s the only expression in the 
MIN/MAX environment. 



Conclusions

● English exclusives just, merely, and mere can license negative polarity items, 
but only when they compose with degree terms. 

● To explain this data in a framework that predicts polarity contrasts between 
exclusives more generally, we need a numeral semantics that maximizes over 
degrees, without which the unusual NPI-licensing properties of these 
exclusives would go unexplained. 



Conclusions

● We need stricter restrictions on how exclusives order alternatives: just, 
merely, and mere are restricted to rank-order scales.

● Numerals denote singular degree terms, but can be shifted to upper-bounding 
degree quantifiers.



Thanks!
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Bonus: Bylinina & Nouwen (2018)

Why doesn’t zero license NPIs?

(22)

a. No cats won any awards.
b. #Zero cats won any awards. 



Bonus: Bylinina & Nouwen (2018)

(23) ∃x[cats(x) ∧ won(awards)(x) ∧ #(x) = 0]

● This is a contradiction given traditional semantics of plural count nouns as a 
join semi-lattice. 

● BN propose to augment plural noun denotations with a bottom element ⊥.



Bonus: Bylinina & Nouwen (2018)

● With ⊥, zero sentences are tautologies, but become contingent via 
exhaustification. 

● NPIs are bad: (24) is not downward entailing prior to application of exh.

(24) [[exh[Zero cats won awards]]]

= ∃x[cats(x) ∧ won(awards)(x) ∧ #(x) = 0] ∧ ¬∃y[cats(y) ∧ 

won(awards)(y) ∧ #(y) > 0]



Bonus: Bylinina & Nouwen (2018)

(25) max[n|∃x[cats(x) ∧ won(awards)(x) ∧ #(x) = n]] = 0

● The doubly bounded (25) derives the right truth-conditions, but wrongly 
predicts zero to license NPIs.

● BN argue that zero’s polarity profile is evidence for a lower-bounded 
existential numeral semantics that does not maximize over degrees. 



Bonus: Bylinina & Nouwen (2018)

● Given upper-bounded numeral semantics, we expect zero to license NPIs 
because it’s the lowest value in the domain.

● But as the data I’ve considered in this paper shows, positive numerals do 
license NPIs when it’s presupposed that they denote the lowest value in the 
domain. 

● Data with zero and positive numerals points in different directions!


